Đề 001-TN THPT QG

Câu 42. Cho số phức $z=a+bi$ $\left( a,\,b\in \mathbb{R} \right)$ thỏa mãn $\left| z-3 \right|=\left| z-1 \right|$ và $\left( z+2 \right)\left( \overline{z}-i \right)$ là số thực. Tính $a+b$.

A. $-2$.                           B. 0.                              C. 2.                              D. 4.

Hướng dẫn giải

Chọn B

Ta có $z=a+bi\,$$\left( a,\,b\in \mathbb{R} \right)$.

+) $\left| z-3 \right|=\left| z-1 \right|$$\Leftrightarrow \left| a-3+bi \right|=\left| a-1+bi \right|$$\Leftrightarrow \sqrt{{{\left( a-3 \right)}^{2}}+{{b}^{2}}}=\sqrt{{{\left( a-1 \right)}^{2}}+{{b}^{2}}}$$\Leftrightarrow {{\left( a-3 \right)}^{2}}+{{b}^{2}}={{\left( a-1 \right)}^{2}}+{{b}^{2}}$$\Leftrightarrow -4a+8=0$$\Leftrightarrow a=2$.

+) $\left( z+2 \right)\left( \overline{z}-i \right)=\left( a+bi+2 \right)\left( a-bi-i \right)=\left[ \left( a+2 \right)+bi \right]\left[ a-\left( b+1 \right)i \right]$ $=a\left( a+2 \right)+b\left( b+1 \right)-\left( a+2b+2 \right)i$.

$\left( z+2 \right)\left( \overline{z}-i \right)$ là số thực $\Leftrightarrow a+2b+2=0$.

Thay $a=2$ tìm được $b=-2$.

Vậy $a+b=0$.

Trở về đề thi

Chuyên mục: Bài viết mới

0 Bình luận

Trả lời

Avatar placeholder
Translate »
error: Content is protected !!